Как устроен квантовый компьютер

Квантовый компьютер: как он устроен

Количество информации в мире возрастает ежегодно на 30%. Только за последние пять лет человечеством было произведено больше данных, чем за всю предшествующую историю. Появляются системы Интернета вещей, в которых каждый датчик отправляет и получает огромное количество данных ежесекундно, и, по прогнозам аналитиков, количество подключенных к Интернету вещей скоро превысит количество пользователей-людей. Эти колоссальные объемы информации необходимо где-то хранить и как-то обрабатывать.

Сейчас уже существуют суперкомпьютеры мощностью более 50 петафлопс (1 петафлопс =1 тыс. трлн операций в секунду). Однако рано или поздно мы упремся в физический предел возможной мощности процессоров. Конечно, суперкомпьютеры все еще смогут расти в размерах, но это не решение проблемы, поскольку и размеры когда-нибудь достигнут своих пределов. По мнению ученых, скоро закон Мура перестанет исполняться и человечеству понадобятся новые, значительно более мощные устройства и технологии обработки данных. Поэтому уже сейчас крупные ИТ-компании работают над созданием совершенно нового революционного типа компьютеров, мощности которых будут в сотни раз превосходить те, что мы имеем на сегодняшний день. Это — квантовый компьютер. Эксперты обещают, что благодаря ему, возможно, удастся найти лекарство от рака, моментально находить преступников, анализируя записи с камер, моделировать молекулы ДНК. Сейчас даже представить сложно, какие еще задачи он сможет решать.

Microsoft старается быть на передовой развития этой области, изучая ее уже на протяжении двадцати лет, ведь тот, кто первым создаст квантовый компьютер, получит неоспоримое конкурентное преимущество. Причем компания работает не только над созданием «железа», но также недавно представила язык программирования, который смогут использовать разработчики. На самом деле очень немногие люди могут похвастаться тем, что понимают принципы работы этого революционного устройства, для большинства из нас это нечто из разряда фантастики. Так что же он собой представляет?

Одной из важнейших частей компьютера, от которой напрямую зависит его мощность, является процессор, который, в свою очередь, состоит из огромного числа транзисторов. Транзисторы — это простейшие части системы, они чем-то похожи на переключатели и могут находиться только в двух положениях: либо «включен», либо «выключен». Именно из комбинаций этих положений складывается двоичный код, состоящий из нулей и единиц, на котором базируются все языки программирования.

Соответственно, чем мощнее компьютер, тем больше транзисторов необходимо для его работы. Производители постоянно уменьшают их размеры, стараясь уместить как можно большее число в процессоры. Например, в новом Xbox One X их миллиарды.

Сейчас размер одного транзистора составляет 10 миллимикрон, то есть одну стотысячную миллиметра. Но однажды будет достигнут физический предел, меньше которого транзистор просто невозможно сделать. Для того чтобы избежать кризиса в развитии ИТ, ученые работают над созданием компьютера, который будет работать по совершенно другому принципу, — квантового. Транзисторы, из которых будет состоять квантовый компьютер, могут находиться одновременно в двух положениях: «включен» и «выключен» и, соответственно, сразу быть и единицей, и нулем, это называется «суперпозиция».

Если мы возьмем 4 стандартных транзистора (бита), то они, работая вместе, могут создать 16 различных комбинаций единиц и нулей. По одной за раз.

Если же мы рассматриваем 4 квантовых транзистора (кубита), то они могут быть всеми 16 комбинациями одновременно. Это огромная экономия места и времени!

Но, конечно же, создать кубиты очень и очень сложно. Ученым приходится иметь дело с субатомными частицами, которые подчиняются законам квантовой механики, разрабатывать совершенно новый подход к программированию и языку.

Существуют различные типы кубитов. Эксперты Microsoft, например, работают над созданием топологических кубитов. Они невероятно хрупки и легко разрушаются от малейших звуковых волн или теплового излучения. Для стабильной работы им необходимо постоянно находиться при температуре –273°C. Однако у них есть и ряд преимуществ перед другими типами: информация, хранящаяся в них, практически не подвержена ошибкам, и, соответственно, квантовый компьютер, созданный на основе топологических кубитов, будет являться сверхнадежной системой.

Квантовый компьютер Microsoft состоит из трех основных уровней: первый уровень — собственно, квантовый компьютер, содержащий кубиты и постоянно находящийся при температуре, близкой к абсолютному нулю; следующий уровень — криогенный компьютер — это тоже совершенно новый тип компьютера, который управляет квантовым и работает при температуре –268°C; последний уровень — компьютер, за которым уже может работать человек, и управляющий всей системой. Подобные компьютеры будут в 100–300 раз превосходить по мощности самые продвинутые суперкомпьютеры, существующие сейчас.

Сегодня мир как никогда близко подошел к изобретению настоящего квантового компьютера: есть понимание принципа его работы, прототипы. И в тот момент, когда мощности обычных компьютеров для обработки всей существующей на Земле информации хватать перестанет, появится квантовый компьютер, знаменующий собой совсем новую эру цифровых технологий.

Как работает квантовый компьютер: Объясняем на пальцах

С этим объяснением вы точно все наконец поймете.

Что такое квантовый компьютер? Вот определение этого термина, сокращенное до одного предложения:

Квантовый компьютер — это тип вычислительной машины, которая использует эффекты квантовой механики для выполнения определенных операций более эффективно, чем обычный компьютер.

В этом предложении скрыто слишком много нюансов, поэтому обратимся к простому примеру. Чтобы объяснить, что такое квантовый компьютер, давайте сначала поговорим о том, как работает обычная ЭВМ.

Как хранит информацию обычный компьютер

Привычный нам компьютер хранит информацию в виде нулей и единиц. Таким образом можно представить совершенно разные типы данных — числа, буквы, графику. Каждая ячейка с нулем или единицей называется «бит». Бит может принимать одно из двух значений: 0 или 1.

Как хранит информацию квантовый компьютер

Квантовый компьютер хранит данные не в битах, а в так называемых кубитах. Каждый кубит может равняться не только 0 или 1, но также 0 и 1. Как такое может быть и что именно это означает?

Давайте воспользуемся простым примером. Он может показаться немного искусственным, но все же поможет нам разобраться в принципах работы квантовых компьютеров.

Пример того, как действует квантовый компьютер

Предположим, что вы управляете туристическим агентством и вам необходимо переправить группу людей из одного места в другое. Для упрощения предположим, что она состоит всего из трех человек: Ани (А), Вани (В) и Сережи (С). Допустим, вы заказали два такси и хотите понять, как лучше разместить пассажиров. Кроме того, у вас есть данным о том, кто с кем дружит, а кто с кем враждует.

Предположим, что отношения в группе распределяются следующим образом:

  • Аня и Ваня — друзья;
  • Аня и Сережа — враги;
  • Ваня и Сережа — враги.

Предположим, что вам нужно распределить их таким образом по двум автомобилям, чтобы:

  • Максимизировать число друзей;
  • Минимизировать число врагов, попавших в одно и то же такси.

Итак, мы определили суть задачи. Теперь давайте подумаем, как ее решить с помощью обычного компьютера.

Решение задачи на обычном компьютере

Чтобы решить задачу на обычном, неквантовом компьютере, сначала надо определиться с тем, как хранить соответствующую информацию в битах. Давайте обозначим первое такси нулем, второе — единицей. Теперь порядок размещения можно представить с помощью трех битов. В этом случае значение 0,0,1 будет говорить о следующем:

  • Аня едет в такси 0;
  • Ваня также едет в такси 0;
  • Сережа едет в такси 1.

Поскольку для каждого пассажира есть два варианта, всего существует 2 * 2 * 2 = 8 способов разместить трех человек в двух машинах. Вот список всех возможных конфигураций:

С помощью трех битов можно представить любую из этих комбинаций.

Вычисление оценки для каждой конфигурации

Как с помощью обычного компьютера определить наилучшее решение? Чтобы понять это, давайте посмотрим, как проводятся расчеты. Оценка должна отражать две упомянутые выше цели:

  • Максимизировать число пар друзей в автомобиле;
  • Минимизировать количество пар врагов;

Давайте определим оценку следующим образом:

(оценка некоторого размещения) = (количество дружественных пар в автомобиле) — (число враждебных пар в автомобиле)

Предположим, что Аня, Ваня и Сережа сели в такси 1. В битах это выглядит как 111. В данной ситуации имеется только одна пара друзей — Аня и Ваня, но две враждебных пары: Аня и Сережа, Ваня и Сережа. Таким образом, общий балл этой конфигурации равен 1 — 2 = -1

Решение задачи

Теперь можно перейти к окончательному решению задачи. Чтобы определить наилучшую конфигурацию с помощью обычного компьютера, придется просчитать все варианты и выбрать тот, у которого окажется наивысший балл. Другими словами, компьютер построит таблицу вроде этой:

Как видно, имеется два правильных решения — 001 и 110. Оба набрали наибольшее количество очков (1). Эта задача довольно проста. Ее сложность стремительно возрастает по мере увеличения числа людей. С тремя пассажирами существует восемь возможных конфигураций. С четырьмя их число возрастает до 2 * 2 * 2 * 2 = 16 конфигураций. В общем случае с N пассажирами существует (2 в степени N) возможных расстановок. Если у нас всего 100 человек, необходимо просчитать:

= 10³⁰ = один миллион миллионов миллионов миллионов миллионов конфигураций.

Обычному компьютеру это не под силу.

Решение задачи на квантовом компьютере

Как решить задачу на квантовом компьютере? Чтобы разобраться, давайте вернемся к базовому случаю размещения трех человек в двух такси. Как отмечалось ранее, существует 8 возможных конфигураций:

На обычном компьютере с помощью трех битов мы могли представить только одно решение за раз, например, 001. Однако на квантовом компьютере с помощью трех кубитов мы можем одновременно представить все восемь решений.

Пока нет единой точки зрения на данный феномен. Можно рассматривать его следующим образом.

Прежде всего давайте посмотрим на первый кубит из трех. Когда он одновременно принимает значение 0 и 1, это похоже на создание двух параллельных миров (да, звучит странно, но давайте пока воздержимся от полемики).

В одном из миров кубит равен 0, в другом он равен 1. Что произойдет, если второй кубит также одновременно установить на 0 и 1? В этом случае у нас появится четыре параллельных мира. В первом мире оба кубита установлены на 0 (00). Во втором они равны 01. В третьем — 01, в четвертом — 11.

Похожим образом, если установить все три кубита на 0 и 1, возникнут восемь параллельных миров: 000, 001, 010, 011, 100, 101, 110 и 111.

Аналогия немного странная, однако она помогает правильно интерпретировать поведение кубитов в реальном мире. Выполняя некие вычисления на кубитах, вы на самом деле одновременно проводите их на всех восьми параллельных мирах. Таким образом, вместо того, чтобы последовательно находить каждое решение, мы можем вычислить их все сразу.

В этом конкретном примере квантовый компьютер теоретически найдет одно из лучших решений за доли секунды (001 или 110):

На самом деле, чтобы вычислить эту задачу, необходимо задать квантовому два начальных условия:

  • Все потенциальные решения, представленные кубитами;
  • Функцию, которая каждому решению присваивает некую оценку. В данном случае она подсчитывает число дружеских и вражеских пар в автомобиле.

Используя эти данные, квантовый компьютер найдет одно из лучших решений за доли секунды. В нашем случае это будет 001 или 110 с баллом, равном единице.

Теоретически квантовый компьютер способен находить одно из лучших решений во время каждого запуска задачи. Однако в реальности во время его работы возникают ошибки. Вместо лучшего решения он может найти второе, третье лучшее решение и т. д.

Эти ошибки становятся более заметными по мере возрастания сложности. Таким образом, на практике расчет одной и той же задачи на квантовом компьютере проводится десятки или сотни раз. Затем выбирается наилучший результат.

Масштабирование квантового компьютера

Даже с учетом упомянутых выше ошибок у квантового компьютера отсутствуют проблемы с масштабируемостью, от которых страдают обычные компьютеры. Чтобы разместить трех человек в двух такси, достаточно провести одну операцию. Это связано с тем, что квантовый компьютер одновременно вычисляет оценку всех конфигураций.

В случае четырех человек число операций остается прежним — 1. То же самое справедливо для 100 человек. Одной операцией квантовый компьютер вычисляет все 2¹⁰⁰

= 10³⁰ возможных конфигураций.

Как упоминалось ранее, на практике квантовый компьютер лучше запускать несколько десятков или сотен раз и выбирать наилучший результат из полученных. Однако это все же гораздо быстрее, чем искать решение задачи на обычном компьютере, повторяя одну и ту же операцию миллион миллионов миллионов миллионов миллионов раз.

Подписывайтесь на наш канал в Яндекс.Дзен. Лучшее о финансах и технологиях, а также криптовалюты, эксклюзивы и немного лайфстайла.

Квантовый компьютер

Увеличение вычислительной мощности техники – одна из главных задач ученых и инженеров. Квантовый компьютер способен ее решить. Разработками устройства занимаются Google, IBM, Intel и другие компании. Теоретически квантовый ПК будет работать в 100 млн раз быстрее обычного.

Читайте также:  Сколько каналов в цифровом телевидении - список бесплатных и платных

Что такое квантовый компьютер

Такое вычислительное устройство работает не с битами, а кубитами. Из-за этого квантовый ПК способен обрабатывать одновременно все возможные состояния объекта. Но на практике суперкомпьютеры выполняют такое же количество логических операций в минуту.

Преимущества

Главное достоинство новой технологии – квантовое превосходство. Это способность вычислительных устройств решать задачи, недоступные мощным суперкомпьютерам. Не все ученые поддерживают идею создания такого ПК. Главный аргумент против – невозможность проверки правильности полученного решения. При вычислениях устройство может совершить ошибку, перепутав 0 и 1, а выявить проблему не удастся.

В настоящий момент главная проблема на пути создания квантового превосходства – стабильность кубитов. Эти элементы требуют осторожного обращения: случайный шум или вибрация приводят к потере данных, которые удалось вычислить компьютеру. Для стабильной работы техники температура окружающей среды должна быть не больше 20 мК.

Как работает кубит

В стандартных компьютерах информация представлена двоичным кодом. Биты для хранения и обработки данных принимают значения 0 или 1. Транзисторы выполняют математические операции, а на экране возникает результат преобразования двоичного кода.

Кубит – единица хранения информации в квантовом компьютере. Кроме 0 и 1, он может находиться в неопределенном пограничном состоянии, называемом суперпозицией. Для получения кубита нужно взять один атом, зафиксировать и стабилизировать его, оградив от посторонних излучений, связать с другим атомом.

Чем больше таких элементов соединено между собой, тем стабильнее работает система. Чтобы превзойти классический суперкомпьютер, нужно связать более 49 кубитов. Сделать это очень сложно: атомы, независимо от используемых материалов, всегда нестабильны.

Квантовые вычисления

Теория гласит, что без взаимодействия с другими частицами электрон не имеет однозначных координат на атомной орбите. Только при измерении неопределенность исчезает, а местоположение частицы становится известным.

Суперпозиция и запутывание

Работа компьютера основана на двух механических явлениях:

  1. Запутанность. Явление, при котором состояние двух и более объектов взаимозависимо. Например, у 2 фотонов в запутанном состоянии спиральность окажется отрицательной и положительной. Взаимосвязь сохранится, если убрать объекты друг от друга в пространстве.
  2. Когерентная суперпозиция. Одновременное воздействие на частицу альтернативных (взаимоисключающих) состояний.

Декогеренция

Это процесс, при котором состояние квантовой системы становится неконтролируемым. Декогеренция возникает, когда много кубитов зависят друг от друга. Проблема появляется при взаимодействии компьютера с радиацией, космическими лучами или магнитным полем.

Для защиты компьютеров от «скатывания» к обычным вычислительным процессам применяют разные методы. Компания D-Wave Systems охлаждает атомы до нуля, чтобы защитить их от внешних воздействий. Квантовый процессор помещают в защитные оболочки, поэтому готовые устройства очень громоздкие.

Вероятность создания квантового ПК

Кубит не построить из нескольких частиц, а в нужном состоянии могут находиться только атомы. По умолчанию эти множественные частицы неурегулированные. Китайские и канадские ученые пытались использовать для разработки компьютера чипы на фотонах, но исследования не увенчались успехом.

Существующие типы квантовых ПК:

  • в полупроводниковых кремниевых кристаллах;
  • на электронах в полупроводниковых квантовых точках;
  • в микрорезонаторах на одиночных атомах;
  • на линейных оптических элементах;
  • на ионах в одномерном кристалле в ловушке Пауля.

Квантовые вычисления предполагают последовательность операций, которые совершаются с одним или несколькими кубитами, что вызывает изменения всей системы. Задача – выбрать из всех ее состояний правильное, дающее результат вычислений. Может быть сколь угодно много состояний, максимально приближенных к истинному.

Для полноценного квантового ПК нужны значительные достижения в физике. Программирование должно отличаться от существующего сейчас. Квантовые вычислительные устройства не смогут решить задачи, которые не под силу обычным, но ускорят решения тех, с которыми справляются.

Последним по времени прорывом стало создание процессора Bristlecone корпорацией Google. Весной 2018 года компания опубликовала заявление про получение 72-кубитного процессора, но его принципы работы не проафишировала. Считается, что для достижения «квантового превосходства», когда ПК начинает превосходить обычный, потребуется 49 кубитов. Google добилась выполнения условия, но вероятность погрешности вычислений (0,6 %) осталась выше требуемого.

Где могут применяться квантовые компьютеры

Современная криптография базируется на том, что невозможно быстро разложить число на 40–50 знаков. У классических компьютеров на это уйдет 1–2 млрд лет. Квантовый ПК сделает эти математические вычисления за 25 секунд. Это значит, что любые алгоритмы шифрования можно будет мгновенно взломать.

Другие сферы применения квантовых вычислительных устройств:

  • моделирование химических реакций;
  • искусственный интеллект;
  • разработка новых лекарств.

Современные квантовые ПК этого не умеют.

Видео

Нашли в тексте ошибку? Выделите её, нажмите Ctrl + Enter и мы всё исправим!

Квантовые компьютеры

Кандидат физико-математических наук Л. ФЕДИЧКИН (Физико-технологический институт Российской академии наук.

ВВЕДЕНИЕ, ИЛИ НЕМНОГО О ЗАЩИТЕ ИНФОРМАЦИИ

Как вы думаете, на какую программу в мире продано наибольшее количество лицензий? Не рискну настаивать, что знаю правильный ответ, но мне точно известен один неверный: это не какая-либо из версий Microsoft Windows. Самую распространенную операционную систему опережает скромный продукт фирмы RSA Data Security, Inc. – программа, реализующая алгоритм шифрования с открытым ключом RSA, названный так в честь его авторов – американских математиков Ривеста, Шамира и Адельмана.

Дело в том, что алгоритм RSA встроен в большинство продаваемых операционных систем, а также во множество других приложений, используемых в различных устройствах – от смарткарт до сотовых телефонов. В частности, имеется он и в Microsoft Windows, а значит, распространен заведомо шире этой популярной операционной системы. Чтобы обнаружить следы RSA, к примеру, в браузере Internet Explorer (программе для просмотра www-страниц в сети Интернет), достаточно открыть меню “Справка” (Help), войти в подменю “О программе” (About Internet Explorer) и просмотреть список используемых продуктов других фирм. Еще один распространенный браузер Netscape Navigator тоже использует алгоритм RSA. Вообще, трудно найти известную фирму, работающую в области высоких технологий, которая не купила бы лицензию на эту программу. На сегодняшний день фирма RSA Data Security, Inc. продала уже более 450 миллионов(!) лицензий.

Почему же алгоритм RSA оказался так важен?

Представьте, что вам необходимо быстро обменяться сообщением с человеком, находящимся далеко. Благодаря развитию Интернета такой обмен стал доступен сегодня большинству людей – надо только иметь компьютер с модемом или сетевой картой. Естественно, что, обмениваясь информацией по сети, вы бы хотели сохранить свои сообщения в тайне от посторонних. Однако полностью защитить протяженную линию связи от прослушивания невозможно. Значит, при посылке сообщений их необходимо зашифровать, а при получении – расшифровать. Но как вам и вашему собеседнику договориться о том, каким ключом вы будете пользоваться? Если послать ключ к шифру по той же линии, то подслушивающий злоумышленник легко его перехватит. Можно, конечно, передать ключ по какой-нибудь другой линии связи, например отправить его телеграммой. Но такой метод обычно неудобен и к тому же не всегда надежен: другую линию тоже могут прослушивать. Хорошо, если вы и ваш адресат заранее знали, что будете обмениваться шифровками, и потому заблаго-временно передали друг другу ключи. А как быть, например, если вы хотите послать конфиденциальное коммерческое предложение возможному деловому партнеру или купить по кредитной карточке понравившийся товар в новом Интернет-магазине?

В 1970-х годах для решения этой проблемы были предложены системы шифрования, использую щие два вида ключей для одного и того же сообщения: открытый (не требующий хранения в тайне) и закрытый (строго секретный). Открытый ключ служит для шифрования сообщения, а закрытый – для его дешифровки. Вы посылаете вашему корреспонденту открытый ключ, и он шифрует с его помощью свое послание. Все, что может сделать злоумышленник, перехвативший открытый ключ, – это зашифровать им свое письмо и направить его кому-нибудь. Но расшифровать переписку он не сумеет. Вы же, зная закрытый ключ (он изначально хранится у вас), легко прочтете адресованное вам сообщение. Для зашифровки ответных посланий вы будете пользоваться открытым ключом, присланным вашим корреспондентом (а соответствующий закрытый ключ он оставляет себе).

Как раз такая криптографическая схема и применяется в алгоритме RSA – самом распространенном методе шифрования с открытым ключом. Причем для создания пары открытого и закрытого ключей используется следующая важная гипотеза. Если имеется два больших (требующих более сотни десятичных цифр для своей записи) простых числа M и K, то найти их произведение N=MK не составит большого труда (для этого даже не обязательно иметь компьютер: достаточно аккуратный и терпеливый человек сможет перемножить такие числа с помощью ручки и бумаги). А вот решить обратную задачу, то есть, зная большое число N, разложить его на простые множители M и K (так называемая задача факторизации ) – практически невозможно! Именно с этой проблемой столкнется злоумышленник, решивший “взломать” алгоритм RSA и прочитать зашифрованную с его помощью информацию: чтобы узнать закрытый ключ, зная открытый, придется вычислить M или K.

Для проверки справедливости гипотезы о практической сложности разложения на множители больших чисел проводились и до сих пор еще проводятся специальные конкурсы. Рекордом считается разложение всего лишь 155-значного (512-битного) числа. Вычисления велись параллельно на многих компьютерах в течение семи месяцев 1999 года. Если бы эта задача выполнялась на одном современном персональном компьютере, потребовалось бы примерно 35 лет машинного времени! Расчеты показывают, что с использованием даже тысячи современных рабочих станций и лучшего из известных на сегодня вычислительных алгоритмов одно 250-значное число может быть разложено на множители примерно за 800 тысяч лет, а 1000-значное – за 10 25 (!) лет. (Для сравнения возраст Вселенной равен

Поэтому криптографические алгоритмы, подобные RSA, оперирующие достаточно длинными ключами, считались абсолютно надежными и использовались во многих приложениях. И все было хорошо до тех самых пор . пока не появились квантовые компьютеры.

Оказывается, используя законы квантовой механики, можно построить такие компьютеры, для которых задача факторизации (и многие другие!) не составит большого труда. Согласно оценкам, квантовый компьютер с памятью объемом всего лишь около 10 тысяч квантовых битов способен разложить 1000-значное число на простые множители в течение всего нескольких часов!

КАК ВСЕ НАЧИНАЛОСЬ?

Только к середине 1990-х годов теория квантовых компьютеров и квантовых вычислений утвердилась в качестве новой области науки. Как это часто бывает с великими идеями, сложно выделить первооткрывателя. По-видимому, первым обратил внимание на возможность разработки квантовой логики венгерский математик И. фон Нейман. Однако в то время еще не были созданы не то что квантовые, но и обычные, классические, компьютеры. А с появлением последних основные усилия ученых оказались направлены в первую очередь на поиск и разработку для них новых элементов (транзисторов, а затем и интегральных схем), а не на создание принципиально других вычислитель ных устройств.

В 1960-е годы американский физик Р. Ландауэр, работавший в корпорации IBM, пытался обратить внимание научного мира на то, что вычисления – это всегда некоторый физический процесс, а значит, невозможно понять пределы наших вычислительных возможностей, не уточнив, какой физической реализации они соответствуют. К сожалению, в то время среди ученых господствовал взгляд на вычисление как на некую абстрактную логическую процедуру, изучать которую следует математикам, а не физикам.

По мере распространения компьютеров ученые, занимавшиеся квантовыми объектами, пришли к выводу о практической невозможности напрямую рассчитать состояние эволюционирующей системы, состоящей всего лишь из нескольких десятков взаимодействующих частиц, например молекулы метана (СН 4 ). Объясняется это тем, что для полного описания сложной системы необходимо держать в памяти компьютера экспоненциально большое (по числу частиц) количество переменных, так называемых квантовых амплитуд. Возникла парадоксальная ситуация: зная уравнение эволюции, зная с достаточной точностью все потенциалы взаимодействия частиц друг с другом и начальное состояние системы, практически невозможно вычислить ее будущее, даже если система состоит лишь из 30 электронов в потенциальной яме, а в распоряжении имеется суперкомпьютер с оперативной памятью, число битов которой равно числу атомов в видимой области Вселенной(!). И в то же время для исследования динамики такой системы можно просто поставить эксперимент с 30 электронами, поместив их в заданные потенциал и начальное состояние. На это, в частности, обратил внимание русский математик Ю. И. Манин, указавший в 1980 году на необходимость разработки теории квантовых вычислительных устройств. В 1980-е годы эту же проблему изучали американский физик П. Бенев, явно показавший, что квантовая система может производить вычисления, а также английский ученый Д. Дойч, теоретически разработавший универсальный квантовый компьютер, превосходящий классический аналог.

Читайте также:  GSMIN WR11 — умный гаджет

Большое внимание к проблеме разработки квантовых компьютеров привлек лауреат Нобелевской премии по физике Р. Фейн-ман, хорошо знакомый постоянным читателям “Науки и жизни”. Благодаря его авторитетному призыву число специалистов, обративших внимание на квантовые вычисления, увеличилось во много раз.

И все же долгое время оставалось неясным, можно ли использовать гипотетическую вычислительную мощь квантового компьютера для ускорения решения практических задач. Но вот в 1994 году американский математик, сотрудник фирмы Lucent Technologies (США) П. Шор ошеломил научный мир, предложив квантовый алгоритм, позволяющий проводить быструю факторизацию больших чисел (о важности этой задачи уже шла речь во введении). По сравнению с лучшим из известных на сегодня классических методов квантовый алгоритм Шора дает многократное ускорение вычислений, причем, чем длиннее факторизуемое число, тем значительней выигрыш в скорости. Алгоритм быстрой факторизации представляет огромный практический интерес для различных спецслужб, накопивших банки нерасшифрованных сообщений.

В 1996 году коллега Шора по работе в Lucent Technologies Л. Гровер предложил квантовый алгоритм быстрого поиска в неупорядоченной базе данных. (Пример такой базы данных – телефонная книга, в которой фамилии абонентов расположены не по алфавиту, а произвольным образом.) Задача поиска, выбора оптимального элемента среди многочисленных вариантов очень часто встречается в экономических, военных, инженерных задачах, в компьютерных играх. Алгоритм Гровера позволяет не только ускорить процесс поиска, но и увеличить примерно в два раза число параметров, учитываемых при выборе оптимума.

Реальному созданию квантовых компьютеров препятствовала, по существу, единственная серьезная проблема – ошибки, или помехи. Дело в том, что один и тот же уровень помех гораздо интенсивнее портит процесс квантовых вычислений, чем классических. Пути решения этой проблемы наметил в 1995 году П. Шор, разработав схему кодирования квантовых состояний и коррекции в них ошибок. К сожалению, тема коррекции ошибок в квантовых компьютерах так же важна, как и сложна, чтобы изложить ее в данной статье.

УСТРОЙСТВО КВАНТОВОГО КОМПЬЮТЕРА

Прежде чем рассказать, как же устроен квантовый компьютер, вспомним основные особенности квантовых систем (см. также “Наука и жизнь” № 8, 1998 г.; № 12, 2000 г.).

Для понимания законов квантового мира не следует прямо опираться на повседневный опыт. Обычным образом (в житейском понимании) квантовые частицы ведут себя лишь в том случае, если мы постоянно “подглядываем” за ними, или, говоря более строго, постоянно измеряем, в каком состоянии они находятся. Но стоит нам “отвернуться” (прекратить наблюдение), как квантовые частицы тут же переходят из вполне определенного состояния сразу в несколько различных ипостасей. То есть электрон (или любой другой квантовый объект) частично будет находиться в одной точке, частично в другой, частично в третьей и т. д. Это не означает, что он делится на дольки, как апельсин. Тогда можно было бы надежно изолировать какую-нибудь часть электрона и измерить ее заряд или массу. Но опыт показывает, что после измерения электрон всегда оказывается “целым и невредимым” в одной единственной точке, несмотря на то, что до этого он успел побывать одновременно почти везде. Такое состояние электрона, когда он находится сразу в нескольких точках пространства, называют суперпозицией квантовых состояний и описывают обычно волновой функцией, введенной в 1926 году немецким физиком Э. Шредингером. Модуль значения волновой функции в любой точке, возведенный в квадрат, определяет вероятность найти частицу в этой точке в данный момент. После измерения положения частицы ее волновая функция как бы стягивается (коллапсирует) в ту точку, где частица была обнаружена, а затем опять начинает расплываться. Свойство квантовых частиц быть одновременно во многих состояниях, называемое квантовым параллелизмом , успешно используется в квантовых вычислениях.

Основная ячейка квантового компьютера – квантовый бит, или, сокращенно, кубит (q-бит). Это квантовая частица, имеющая два базовых состояния, которые обозначаются 0 и 1 или, как принято в квантовой механике, и . Двум значениям кубита могут соответствовать, например, основное и возбужденное состояния атома, направления вверх и вниз спина атомного ядра, направление тока в сверхпроводящем кольце, два возможных положения электрона в полупроводнике и т.п.

Квантовый регистр устроен почти так же, как и классический. Это цепочка квантовых битов, над которыми можно проводить одно- и двухбитовые логические операции (подобно применению операций НЕ, 2И-НЕ и т.п. в классическом регистре).

К базовым состояниям квантового регистра, образованного L кубитами, относятся, так же как и в классическом, все возможные последовательности нулей и единиц длиной L. Всего может быть 2 L различных комбинаций. Их можно считать записью чисел в двоичной форме от 0 до 2 L -1 и обозначать . Однако эти базовые состояния не исчерпывают всех возможных значений квантового регистра (в отличие от классического), поскольку существуют еще и состояния суперпозиции, задаваемые комплексными амплитудами, связанными условием нормировки. Классического аналога у большинства возможных значений квантового регистра (за исключением базовых) просто не существует. Состояния классического регистра – лишь жалкая тень всего богатства состояний квантового компьютера.

Представьте, что на регистр осуществляется внешнее воздействие, например, в часть пространства поданы электрические импульсы или направлены лазерные лучи. Если это классический регистр, импульс, который можно рассматривать как вычислительную операцию, изменит L переменных. Если же это квантовый регистр, то тот же импульс может одновременно преобразовать до переменных. Таким образом, квантовый регистр, в принципе, способен обрабатывать информацию в раз быстрее по сравнению со своим классическим аналогом. Отсюда сразу видно, что маленькие квантовые регистры (L Автор выражает благодарность Лову Гроверу и Питеру Шору за любезно предоставленные материалы и поддержку при написании статьи.

ЧТО ЧИТАТЬ О КВАНТОВЫХ КОМПЬЮТЕРАХ

Для более глубокого освоения этой темы можно прочитать обзорную статью Э. Риффеля, В. Полака “Основы квантовых вычислений”, опубликованную в издаваемом в России журнале “Квантовые компьютеры и квантовые вычисления” (№ 1, 2000 г.). (Кстати, это первый и пока единственный в мире журнал, посвященный квантовым вычислениям. Дополнительную информацию о нем можно узнать в Интернете по адресу http://rcd.ru/qc.). Освоив эту работу, вы сможете читать научные статьи по квантовым вычислениям.

Несколько большая предварительная математическая подготовка потребуется при чтении книги А. Китаева, А. Шеня, М. Вялого “Классические и квантовые вычисления” (М.: МЦНМО-ЧеРо, 1999).

Ряд принципиальных аспектов квантовой механики, существенных для проведения квантовых вычислений, разобран в книге В. В. Белокурова, О. Д. Тимофеевской, О. А. Хрусталева “Квантовая телепортация – обыкновенное чудо” (Ижевск: РХД, 2000).

В издательстве РХД готовится к выходу в виде отдельной книги перевод обзора А. Стина, посвященный квантовым компьютерам.

По вторникам с 15.00 в конференц-зале Физико-технологического институт РАН в Москве проходит семинар “Квантовый компьютер”. Информацию о том, как принять участие в семинаре, можно узнать в Интернете по адресу http://qc.ipt.ac.ru.

Следующая литература будет полезна не только в познавательном, но и в историческом плане:

1) Ю. И. Манин. Вычислимое и невычислимое.

– М.: Сов. радио, 1980.

2) И. фон Нейман. Математические основы квантовой механики.

3) Р. Фейнман. Моделирование физики на компьютерах // Квантовый компьютер и квантовые вычисления:

Сб. в 2-х т. – Ижевск: РХД, 1999. Т. 2, с. 96-123.

4) Р. Фейнман. Квантово-механические компьютеры

Квантовый ликбез

Квантовые компьютеры — интересно, но не всегда понятно

Время от времени исследовательские центры сообщают о теоретических и практических успехах на пути к созданию квантового компьютера. Считая это чрезвычайно интересной темой, Лента.ру старается освещать основные достижения в данной области. Эта неделя выдалась особо богатой на квантовые новости. Некоторые из них мы описали, а потом, засомневавшись, понятны ли наши заметки читателям-неспециалистам, остальные отложили и попытались вместо того составить небольшой квантовый ликбез.

Что такое квант и зачем он нужен

В классической физике величины могут изменяться равномерно и непрерывно, принимая любые значения. Физика микромира дискретна: у величин есть ряд фиксированных значений, которые они могут принимать. Если пытаться вообразить такую ситуацию в макромире, то можно представить, например, что предметы имеют температуру, которая выражается только целым числом градусов. То есть 10, 20, 31, 36 градусов – может быть, а вот 36,6 – просто невозможно. Нагревать и охлаждать предметы можно, но при этом температура будет скакать туда-сюда сразу на градус. Примерно таким свойством обладают многие характеристики микромира.

В частности, энергия электромагнитного поля излучается только в виде дискретных неделимых порций. Вот такая порция и называется квантом. Предположение о существовании квантов сделал в 1900-1901 годах Макс Планк, положив тем самым начало квантовой теории, квантовой механике и еще много чему с прилагательным квантовый – в том числе и компьютерам.

Другим удивительным свойством фотонов, электронов и иных частиц является то, что они могут проявлять свойства как частиц, так и волн (поэтому мы можем говорить и о том, что свет – это электромагнитная волна, и о частицах света – фотонах). Для математического описания квантового мира физики используют волновые функции, однако в нашем простом комментарии мы их касаться не будем.

Частицы-волны обладают недоступной для макрообъектов способностью “находиться в нескольких местах одновременно”. Говоря точнее, описать местонахождение не наблюдаемой непосредственно частицы в некотором месте можно только с некоторой вероятностью.

На наблюдения и измерения в микромире тоже есть существенное ограничение: принцип неопределенности Гейзенберга . Чтобы избежать определения “произведение стандартных отклонений измерений двух сопряженных переменных состояния не может быть меньше константы”, популярно его обычно объясняют так: нельзя точно измерить одновременно скорость и координаты частиц. Чем точнее мы измеряем скорость, тем больше будет ошибка в измерении координат, и наоборот.

Гейзенберга, превышающего скорость, догоняет полицейский автомобиль.
– Вы хоть знаете, как быстро едете? – кричит полицейский.
– Нет, зато я знаю, где я нахожусь!
Популярный анекдот.

Пока мы объекты не измеряем, они ведут себя и того хуже. Если квантовая система может находиться в нескольких состояниях и неизвестно, в каком именно она находится, то говорят о суперпозиции состояний. Можно говорить, что неизвестно, в каком состоянии находится система, или что она находится в нескольких состояниях одновременно, это вопрос интерпретации. В любом случае при измерении система выбирает одно из состояний.

Известным наглядным примером является мысленный эксперимент, называемый “кот Шредингера”: в закрытый ящик помещены живой кот, емкость с ядовитым газом и радиоактивное ядро. Если ядро распадается, оно приводит в действие механизм, который открывает емкость с газом и тем самым убивает кота. Вероятность того, что ядро распадется за час, – 50 процентов. Через час кот в ящике жив с вероятностью 50 процентов. С точки зрения квантовой механики, пока ящик закрыт, кот находится в суперпозиции двух состояний (то ли жив, то ли мертв; и жив, и мертв; ни жив ни мертв – как угодно). В тот момент, когда наблюдатель открывает ящик, он видит, жив кот или мертв.

Наконец, еще одно важное для нас явление – квантовая запутанность (entanglement), она же спутанность, сцепление, иногда связанность. О запутанности говорят, когда состояние двух (или более) квантовых систем должно описываться во взаимосвязи друг с другом, даже если сами системы разнесены в пространстве. Соответственно, физические свойства каждой из систем связаны с физическими свойствами другой, при том что они могут находиться не рядом и ничем не соединяться.

Если две запутанные системы находятся в суперпозиции состояний, то, измерив состояние одной, можно узнать состояние другой. Например, можно запутать два атома, спин (определенная квантовая характеристика) одного из которых будет направлен вверх, а другого – вниз, причем мы не будем знать, у какого атома какой спин. Но измерив спин одного атома, мы тут же узнаем и спин другого, даже если они разнесены в пространстве. Недавно физикам удалось запутать атомы на расстоянии метра друг от друга.

Все эти и многие другие особенности микромира и позволяют построить квантовый компьютер.

Как из этого сделать компьютер

Даже имея в своем распоряжении суперкомпьютер, в оперативной памяти которого больше битов, чем атомов в видимой области Вселенной, мы не сможем просчитать будущее системы. Между тем мы можем его выяснить, просто поставив эксперимент (разумеется, одно из возможных – но мы ведь можем поставить эксперимент несколько раз).

В 1980 году советский математик Юрий Манин задумался: а нельзя ли посмотреть на задачу с другой стороны и, раз квантовая система может то, чего не могут наши компьютеры, использовать эти ее возможности с пользой, а именно – заставить ее производить вычисления? Эту идею поддержали физики, в частности, Нобелевский лауреат Ричард Фейнман.

Читайте также:  Что такое Пандора - Pandora - украшение, фото

В 90-е годы были найдены конкретные приложения для теоретической квантовой мощи (см. ниже), а в 2001 – создан первый прототип квантового компьютера.

Как устроен квантовый компьютер

Ячейкой хранения информации в квантовом компьютере является квантовый бит (quantum bit, qubit), или кубит. Это квантовая частица, которая может иметь два состояния (одно принимается за 0, другое – за 1). Физически кубит может быть устроен по-разному: это может быть атом, имеющий два энергетических состояния (чаще используется квантовая точка, или искусственный атом: маленький фрагмент проводника или полупроводника), атомное ядро или электрон, имеющий два возможных значения спина – вниз и вверх, сверхпроводящее кольцо, в котором ток может течь в двух направлениях, и т.п.

N кубит (по данным словарей, надо говорить пять бит, но много битов, логично склонять кубит так же) могут, как и N бит, иметь 2 N возможных состояний, однако принципиальное отличие состоит в том, что кубиты могут находиться в суперпозиции этих состояний и быть при этом запутанными между собой. Это значит, что система из нескольких кубитов (квантовый регистр) находится в каждом из состояний с некоторой вероятностью, а самое главное, это значит, что за счет запутанности можно изменить сразу все 2 N состояний. В классическом компьютере такая операция потребовала бы 2 N шагов. Это обеспечивает беспрецедентный параллелизм вычислений, и именно это является основой мощности квантовых компьютеров.

В классическом компьютере за один такт процессор может изменить одно состояние, которое хранят N бит памяти. В квантовом компьютере за один такт можно изменить N кубит, которые находятся в состоянии, являющемся суперпозицией всех базовых состояний, а следовательно, все 2 N базовых состояний. Таким
образом, квантовый компьютер отчасти является не цифровым, а аналоговым устройством.

Что могут квантовые компьютеры

Первый алгоритм для квантовых компьютеров – разложение числа на простые множители – был разработан в 1994 году Питером Шором. Эту задачу умеют решать и классические компьютеры, но времени они на это требуют неизмеримо больше (квантовые же справляются с разложением за время, полиномиальное от раскладываемого числа).

Алгоритм Шора имеет большое значение для современной криптографии. Если удастся создать достаточно мощные квантовые компьютеры, то часть использующихся систем шифрования с открытым ключом (например, RSA) станет уязвима для взлома: для подбора тайного ключа необходимо разложить открытый на простые множители. При достаточно длинном ключе даже современным суперкомпьютерам на это нужны сотни лет, а вот перед квантовыми он не устоит.

Разрабатываются и применения квантовых компьютеров для противоположной задачи: не взлома, а усиления защиты информации.

Еще одним известным алгоритмом является алгоритм Гровера: алгоритм поиска в неструктурированной базе данных.

Итак, квантовый компьютер – это вычислительное устройство, работа которого строится на квантовомеханических эффектах, в частности, на принципе квантовой запутанности, позволяющем реализовать параллелизм вычислений.

Некоторые специалисты сравнивают современное состояние квантовых информационных технологий с уровнем развития классических компьютеров в 1950-е годы, то есть разработчикам квантовых компьютеров предстоит решить еще много теоретических и практических проблем. Есть и мнение, что мощный работающий квантовый компьютер никогда не будет создан. Но даже в этом случае исследования в этом направлении могут привести к неожиданным полезным открытиям, а значит, должны и будут продолжаться.

Квантовый компьютер — что это простыми словами, принцип действия

Очередной привет всем читателям моего блога! Вчера в новостях проскочила в очередной раз пара сюжетов о «квантовом» компьютере. Мы из школьного курса физики знаем, что квант — это некая одинаковая порция энергии, еще есть словосочетание «квантовый скачок», то есть мнгновенный переход с некоего уровня энергии на еще более высокий уровень.. Давайте вместе разбираться, что такое квантовый компьютер, и что нас всех ожидает, когда появится эта чудо машина

Я впервые начал интересоваться этой темой при просмотре фильмов про Эдварда Сноудена. Как известно, этот американский гражданин собрал несколько терабайт конфиденциальной информации (компромата) о деятельности спецслужб США, хорошенько зашифровал ее и выложил в Интернет. «Если, сказал он, со мной что-нибудь случиться, информация будет расшифрована и станет таким образом доступна для всех.»

Расчет был на то, что информация эта «горячая», будет актуальна еще лет десять. А расшифровать ее можно современными вычислительными мощностями то же не меньше, чем через десять или больше лет. Квантовый же компьютер по ожиданиям разработчиков справится с этой задачей минут за двадцать пять.. Криптографы в панике. Вот такой «квантовый» скачок нас скоро ожидает, друзья.

Принципы работы квантового компьютера для чайников

Раз мы уж заговорили о квантовой физике, давайте немножко поговорим о ней. Я не буду углубляться в дебри друзья. Я ведь «чайник», а не квантовый физик. Лет сто назад Энштейн опубликовал свою теорию относительности. Все умные люди того времени удивлялись, как много в ней парадоксов и невероятных вещей. Так вот, все пародоксы Энштейна, описывающие законы нашего мира — просто невинный лепет пятилетнего ребенка по сравнению с тем, что твориться на уровне атомов и молекул.

Сами «квантовые физики», описывающие явления происходящие на уровнях электронов и молекул говорят примерно так: » Это невероятно. Этого не может быть. Но это так. Не спрашивайте нас, как это все работает. Мы не знаем, как и почему. Мы просто наблюдаем. Но это работает. Это доказано экспериментально. Вот формулы, зависимости и записи экспериментов.»

Так в чем же разница между обычным и квантовым компьютером? Ведь обычный компьютер тоже работает на электричестве, а электричество — это куча очень маленьких частиц — электронов?

Наши с Вами компьютеры работают по принципу или «Да» или «Нет». Если есть ток в проводе, это «Да»или «Единица». Если тока в проводе «Нет», то это «Ноль». Вариант значения «1 «и «0» есть единица хранения информации под названием «Бит».. Один байт это 8 бит и так далее и так далее…

Теперь представьте ваш процессор, на котором 800 миллионов таких «проводов» на каждом из которых за секунду появляется и исчезает такой вот «ноль» или «единица». И вы мысленно можете вообразить, как он обрабатывает информацию. Вы сейчас читаете текст, но на самом деле это совокупность нулей и единиц.

Путем перебора и вычислений Ваш компьютер обрабатывает Ваши запросы в Яндексе, ищет нужные до тех пор, пока не решит задачу и путем исключения не докопается до нужной Вам . Выводит на монитор шрифты, картинки в читаемом для нас виде… Пока надеюсь ничего сложного? А картинка — это тоже нули и единицы.

Представьте теперь себе друзья на секунду модель нашей солнечной системы. В центре Солнце, вокруг него летит Земля. Мы знаем, что она в определенный момент всегда находится в определенной точке пространства и через секунду она уже улетит на тридцать километров дальше.

Так вот, модель атома то же планетарная, там атом тоже вращается вокруг ядра. Но ДОКАЗАНО, друзья, умными парнями в очках, что атом в отличии от Земли одновременно и всегда находится во всех местах..Везде и нигде одновременно. И назвали они это замечательное явление «суперпозицией». Для того, чтобы познакомится поближе и другими явлениями квантовой физики, предлагаю глянуть научно-популярный фильм, где простым языком рассказывается о сложном и в довольно оригинальной форме.

Продолжим. И вот на смену «нашему» биту приходит квантовый бит. Его еще называют «Кубит». У него то же всего два исходных состояния «ноль» и «единица». Но, так как природа его «квантовая», то он может ОДНОВРЕМЕННО принимать все возможные промежуточные значения. И одновременно находиться в них. Теперь значения не надо последовательно вычислять, перебирать. долго искать в базе. Они известны уже заранее, сразу. Вычисления идут параллельно.

Первые «квантовые» алгоритмы для математических вычислений были придуманы еще математиком из Англии Питером Шором в 1997 году. Когда он показал их миру, все шифровальщики здорово напряглись, так как существующие шифры «раскалываются» этим алгоритмом за несколько минут.. Вот только компьютеров, работающих по квантовому алгоритму тогда еще не было.

С тех пор с одной стороны идет работа по созданию физической системы, в которой бы работал квантовый бит. То есть «железа». А с другой стороны уже придумывают защиту от квантового взлома и расшифровки данных.

А что сейчас ? А вот так выглядит квантовый процессор под микроскопом на 9 кубит от фирмы Google.

Неужели они нас обогнали? 9 кубит или по «старому» 15 бит, это не так много пока еще. Плюс дороговизна, масса технических проблем и короткое время «жизни» квантов. Но вспомните что сначала были 8 битные, потом появились 16 битные процессоры… Так будет и с этими …

Квантовый компьютер в России — миф или реальность?

А мы что же? А мы то же не за печкой родились. Вот нарыл фото первого российского Кубита под микроскопом. Тут правда он один.

Тоже выглядит как некая «петля», в которой происходит нечто для нас пока не познанное. Отрадно думать, если наши при поддержке государства разрабатывают свое. Так что отечественные разработки это уже не миф. Вот оно, наше будущее. Каким оно будет, посмотрим.

Последние новости о квантовом компьютере России мощностью 51 кубит

Вот новости этого лета. Наши дядечки (честь им и хвала!) разработали самый мощный в мире (!) квантовый (!) компьютер 51 кубит(!)т. Самое интересное то, что до этого Google анонсировало свой компьютер на 49 кубит. И по их оценкам они должны были его закончить через месяц или около того. А наши решили показать уже готовый, свой квантовый процессор на 51 кубит.. Браво! Вот какая идет гонка. Нам хотя бы не отставать. Потому что ожидается большой прорыв в науке, когда эти системы заработают. Вот фото человека, который представлял нашу разработку на «квантовом» международном форуме.

Фамилия этого ученого — Михаил Лукин. Сегодня его имя в центре внимания. Невозможно создать такой проект в одиночку, мы это понимаем. Он и его команда создали на сегодня самый мощный в мире(!) квантовый компьютер или процессор. Вот что говорят по этому поводу компетентные лица:

«Квантовый компьютер функционирующий, он гораздо страшнее атомной бомбы, — отмечает сооснователь Российского квантового центра Сергей Белоусов. — Он (Михаил Лукин) сделал систему, в которой больше всего кубитов. На всякий случай. На данный момент, я думаю, это более чем в два раза больше кубитов, чем у кого-либо другого. И он специально сделал 51 кубит, а не 49. Потому что Google всё время говорили, что сделают 49».

Впрочем, сам Лукин и руководитель квантовой лаборатории Google Джон Мартинес конкурентами или соперниками себя не считают. Учёные убеждены, что их главным соперником является природа, а основной целью — развитие технологий и их внедрение для продвижения человечества на новый виток развития.

«Неправильно думать об этом, как о гонке, — справедливо считает Джон Мартинес. — Настоящая гонка у нас с природой. Потому что это действительно сложно — создать квантовый компьютер. И это просто захватывающе, что кому-то удалось создать систему с таким большим количеством кубитов. Пока 22 кубита — это максимум, что мы могли сделать. Хоть мы и использовали всё своё волшебство и профессионализм».

Да, все это очень интересно. Если вспомнить аналогии, когда изобрели транзистор, никто не мог знать, что на этой технологии через 70 лет будут работать компьютеры. В одном только современном процессоре количество их достигает 700 миллионов..Первый компьютер весил много тонн и занимал большие площади. Но персональные компьютеры все равно появились — много позже…

Я думаю, что пока нам в ближайшее время не стоит ждать появления в наших магазинах устройств такого класса. Многие их ждут. Особенно добытчики криптовалют много спорят по этому поводу. С надеждой взирают на него ученые, и с пристальным вниманием — военные. Потенциал этой разработки как мы понимаем, до конца не ясен.

Ясно только, что когда это все заработает, оно потащит вперед за собой всю наукоемкую промышленность.Постепенно появятся новые технологии, новые отрасли, новый софт.. Время покажет.

Только бы не подвел человеков свой собственный квантовый компьютер, данный нам при рождении — это наша голова. Так что, пока не спешите выкидывать на помойку свои гаджеты. Они долго Вам еще послужат. Пишите, если статья была интересной. Заходите чаще. До свидания!

Ссылка на основную публикацию